
An Implementation of Location Obfuscation
Gautham Yerroju

Dept. of Computer Science
University of Nevada, Reno

gyerroju@nevada.unr.edu

Aswathi Mohan
Dept. of Computer Science
University of Nevada, Reno
aswathim@nevada.unr.edu

Athira Pillai
Dept. of Computer Science

University of Nevada, Reno
apillai@nevada.unr.edu

Dr. Ming Li
Dept. of Computer Science

University of Nevada, Reno
mingli@unr.edu

Abstract—The techniques discussed in the research paper
published by Claudio et al., An Obfuscation-based Approach for
Protecting Location Privacy [1], are implemented in this project.
Specifically, the six obfuscation operators, Enlarge, Reduce, Shift,
Enlarge-Shift, Shift-Enlarge and Shift-Reduce, are implemented,
and the users are given the options to specify the required
relevance value and which obfuscation operators should be used.
The obfuscated location is made available for other applications
to use through a new location provider in the Android system
called FUZZY PROVIDER.

Index Terms—Location privacy, obfuscation

I. INTRODUCTION

The availability of location sensors in cheap consumer
devices like mobile phones has given rise to a new wave of
applications which use the location data of users to provide
various social, informational and business services. In this
context, the privacy of users location data has become an
issue of concern. Untrustworthy third parties with access
to location data of users compromise their location privacy.
Location privacy, as defined in the paper is the right of
individuals to decide how, when, and for which purposes
their location information can be released to third parties.

Many techniques published by the scientific community
achieve privacy by separating a users identity from their
location data. While this works for some applications, there
is a significant number of services where the service is only
useful with a users identity available to the provider. The
research paper published by Claudio et al., An Obfuscation-
based Approach for Protecting Location Privacy proposes a
technique which achieves a compromise by reporting location
readings with reduced accuracy (i.e., obfuscated readings)
to service providers, allowing the users to receive relevant
location-based information without giving the providers their
exact location. This project is an implementation of the
techniques discussed in the paper on the Android platform.

II. BASIC CONCEPTS

The key aspects of obfuscated locations are as follows:

1) Privacy preference should be expressed in an intuitive
way, independent of the sensing technology

2) Obfuscation should be robust against de-obfuscation
attacks

3) Obfuscated location should have a non-zero intersection
area with the real location

The paper proposes a metric called Relevance, which lets
users specify their privacy requirement in a simple way, while
abstracting away the details of the obfuscation techniques and
sensing technologies used.

Location readings from sensors are not accurate, and
have an inherent uncertainty in their accuracy. Locations
are reported by sensors as a planar circle, with a location
(x, y) and a radius (accuracy).Considering this, we have the
following definitions:

Location Measurement A:
〈
X, Y, R

〉
A location measurement is a vector of the x, y and radius of
the planar circle reported by sensors.

Relevance R: r2o / r2i
The ratio of squares of the optimal radius possible for a
sensor (best accuracy possible for a sensor) and the reported
accuracy of a particular reading Ai. This means that relevance
Ri has a range of (0, 1].

Location Privacy:
Location Privacy is simply 1 - Relevance.

Accuracy Degradation λ : Rf / Ri

Accuracy degradation is the ratio of final relevance Rf and
initial relevance Ri, where Ri is the relevance of the location
reading, and Rf is the users desired relevance value.

Then, to obfuscate a location reading Ai is to change
its area to Af , such that Af has a relevance Rf . Note that if
Ri is already less than Rf , then the sensor reading already
satisfies the required relevance value, so no obfuscation needs
to be applied.

III. OBFUSCATION OPERATORS

Before going further into obfuscation operators, it is impor-
tant to establish some probabilistic fundamentals of a location
reading. As discussed above, every location reading has an
inherent uncertainty. The implication is that the probability of
the users original location being at any point in the area is
equal, i.e, P(user is at point x, y within area A) has a uniform
distribution, and the user is guaranteed to be within that
range, i.e, P(user somewhere within A), i.e., the cumulative



distribution function (CDF) is 1. This is shown in the figure 1:

Figure 1: A location measurement (a) and the PDF of the
corresponding variable C (b).

A. Enlarge (E)

The enlarge operator degrades the accuracy of a loca-
tion reading by increasing its radius. Note that the prob-
ability that the user is somewhere within the enlarged
area is still 1. The PDF after enlargement operator is
shown below (note that though radius increases, increasing
the interval, the area under the curve, CDF, remains 1).

Figure 2: Radius enlargement.

To obtain the desired relevance rf , the radius of the obfuscated
reading is given by:

rf = ri
√Ri/Rf

B. Reduce (R)

The reduce operator degrades the accuracy of a location
reading by decreasing its radius. This time, the user might
be somewhere within the area not covered by the reduced
area, thus the total probability (CDF) that the user is within
the reduced area is less than 1. This is shown in figure 3:

Figure 3: Radius reduction.

To obtain the desired relevance rf , the radius of the obfuscated
reading is given by:

rf = ri
√Rf /Ri

C. Shift (S)

The shift operator degrades the accuracy of a location mea-
surement by shifting its center. Just like the reduce operator,
shifting a location measurement reduces the total probability
that a user is within the reduced location to less than 1. The
new location of x and y after shift should not be greater
than twice the radius of the circle. This is another way of
enforcing that there should be at least a one point intersection
between the original reading and the obfuscated reading. The
PDF for the shift operator is shown in the following figure:

Figure 4: Center shifting.

To obtain the desired relevance rf , the position of the
obfuscated reading is given by:

(xf , yf ) = (xi + d sinθ, yi + d cosθ){
σ − sinσ =

√
λπ

d = 2ricos(σ/2)

D. Combined Obfuscation Operators

Multiple obfuscation operators can be chained together, but
the end result can be expressed by a combination of just two
obfuscation operators: a shift operator, and either a reduce
or enlarge operator. This implies that we need at most two
obfuscation operators chained together. As for the number of
combinations, the following are possible: O = {E, R, S, ER,
RE, ES, SE, SR, RS}. We can directly exclude the items ER
and RE, since they just result in the original location reading.
Each of the remaining operators have a set of obfuscated
readings that they produce. It has been mathematically proven
in the paper that the set of areas provided by RS is a subset
of the set of areas provided by SR, so we can exclude RS.
Thus, we have a final complete and minimal of obfuscation
operators, O = {E, R, S, ES, SE, SR}

IV. ADVERSARY ANALYSIS

One of the requirements for obfuscation operators is
that the obfuscated readings should be robust against de-
obfuscation. An obfuscation is said to be robust if and only
if the relevance of a reading after de-obfuscation, Rd, is
not better the relevance of the obfuscated reading, Rf . This
section describes the adversary model and the robustness of
obfuscation operators against de-obfuscation techniques. The
following is assumed about the adversary:

Adversary knows:
• Specific obfuscation operators applied



• Location sensing technology used (eg. GPS or Network)
• All available obfuscation operators (i.e., the set O = E,

R, S, ES, SE, SR)
Adversary does not know:

• Area after obfuscation Af

• Relevance of obfuscated area Af

We classify the operators into strongly robust operators and
weakly robust operators.

Strongly robust obfuscation:

• Adversary cannot guess which operators were applied
• *-family E, R, S, ES, SE, SR

Weakly robust obfuscation:
• Adversary can guess which operators were applied
• Unusually small readings: R-family R, SR
• Unusually large readings: E-family E, SE, ES
We also define the following radii to better understand the

results of de-obfuscation:
rf : Radius of Af , the obfuscated area
rmax: Radius which gives best relevance for Ad, the de-
obfuscated area
ri,d: Radius where Ad coincides with Ai in one point
rbp: Radius with the same relevance as Af

A. R-family de-obfuscation

If the adversary knows that an r-family obfuscation has
been applied, the best course of action is to enlarge the
radius, thereby increasing the intersection of the de-obfuscated
area with the real location. This is represented in figure 5:

Figure 5: De-obfuscation attempt on area Af produced
through composed operator SR (partial overlapping).

As the radius is increased, at some point rmax, the maximum
possible relevance is achieved for the de-obfuscated area Ad,
but the adversary cannot know the value of rmax. If the radius
keeps on increasing, eventually the de-obfuscated circle and
the original circle will have an intersection of only one point.
This point may or may not be rmax, depending on whether the
shift operator is applied. But beyond this point, the relevance
of Ad starts to fall. It will eventually fall until it reaches rbp,
where Ad has the same relevance as the initial obfuscated
reading Af .
Note again that the adversary cannot know if this point is
reached, as they keep increasing the radius. Beyond rbp, the

relevance of Ad keeps on decreasing, becoming worse that
what the adversary initially started with. The R-family is
said to be weakly robust, because the adversary knows that
enlargement is the only way to increase the relevance, even
though they do not know by how much to enlarge the radius.

B. E-family de-obfuscation

If the adversary knows that an enlargement opera-
tor has been used, one might think that intuitively, re-
duction is the only beneficial course of action. But
that is not the case. If Af includes Ai, then reduc-
tion is the right way to reverse the obfuscation. But if
Af does not include Ai, enlargement increases intersec-
tion with Ai, not reduction. This is shown in figure 6:

Figure 6: (a) De-obfuscation attempt on area Af produced
through composed operator SE (inclusion) and (b) operator

ES.

Unlike R-family obfuscation, in case of E-family obfuscation,
the adversary does not know whether enlargement or reduction
will reverse the obfuscation. This is in addition to the fact that
similar to R-family, the adversary does not know the values of
rmax, ri, d and rbp, so even the amount of change applied to
the radius is not certain. Thus, E-family is said to be strongly
robust.

C. *-family de-obfuscation

Since the adversary does not know if an enlargement or
reduction type operator has been applied, it is not clear
whether reduction or enlargement should be applied. However,
we have seen that R-family de-obfuscation benefits from en-
largement, whereas E-family de-obfuscation may benefit from
either enlargement or reduction. So, for *-family operators, it
is more likely that enlargement will yield the desired result,
but not as certainly as in case of the R-family. Thus, *-family
is said to have medium robustness.

V. IMPLEMENTATION

All the discussed obfuscation techniques have been
implemented into an Android application. Android Studio
2.3.1 was used to build the application. Googles Fused
Location API was used to get location readings from
the GPS sensor and the Google Maps API was used to
display a map on the screen. A new location provider called
FUZZY PROVIDER was implemented. Any applications



or services using the FUZZY PROVIDER to get location
updates would get obfuscated location readings, preserving
users privacy.

A. Design

The main goal of our implementation was to create a
location provider that other applications can use to get a users
location while respecting privacy. All the six obfuscation
operators are implemented into the application. Users can
specify their location preference using a single metric:
relevance. We implemented it as a slider which sets the value
between 0 and 1. Furthermore, we also enabled users to
select which obfuscation operators should be used. For each
location reading, any of the selected obfuscation operators is
randomly applied.

The main screen of the application shows a map on which
the real location, i.e. the location reported by the on-device
GPS sensor, is displayed as a blue circle. The radius of
the circle indicates the accuracy of the sensor reading in
meters. A green circle is also shown on the map, which is
the obfuscated location, according to user preferences.

Figure 7: Main screen with real and obfuscated location
indicators.

B. Google Fused Location API

Googles Play Services API includes the Fused location
provider, which allows applications to specify the required
granularity and accuracy of location readings they require. The
Fused Location API then reports location readings to the app
from the sensor which satisfies the applications requirements.
For example, navigation applications could query the API
for highly accurate location, for which the API reports GPS
positions. The advantage of using Fused Location instead of

Androids built-in API is that the Fused API integrates well
with other Google Play services and is capable of reporting
accurate locations without GPS by using combining WiFi
and Network readings, to save power. Furthermore, most
Android phones sold in the market come with Google Play
Services pre-installed and deeply integrated. This API was
used to query for GPS location by specifying a high accuracy
requirement.

C. Mock Location API

After retrieving a real location reading from the sen-
sors, the application applies obfuscation operators to the
reading. The obfuscated location could simple be displayed
within the application, but that would limit the useful-
ness of this implementation, because no other application
can access the obfuscated location. Android does not pro-
vide any way to manipulate location readings from the
default sensors (GPS PROVIDER, NETWORK PROVIDER,
PASSIVE PROVIDER and FUSED) on which other ap-
plications rely. For this reason, a new provider called
FUZZY PROVIDER was implemented, through which obfus-
cated location readings are published for other applications to
use. Mock Location API was used to achieve this. The API is
originally intended to be used by developers to test location-
based applications, by allowing them to use their own fictional
location readings. It can be used to implement new providers,
which applications can use.

D. Algorithm

• Listen for location readings from the FUSED
provider (which could internally read either from
GPS PROVIDER or NETWORK PROVIDER)

• On receiving a new reading from the FUSED provider,
update the location and size of the real location indicator
(blue circle)

• If the relevance of real location reading is higher than
the required relevance value, randomly select one of the
enabled obfuscation operators selected by the user and
create a new obfuscated location reading based on the
relevance value set by the user

• Publish obfuscated location to FUZZY PROVIDER
• Listen for location readings from FUZZY PROVIDER
• On receiving a new reading from FUZZY PROVIDER,

update the location and size of the obfuscated location
indicator (green circle)

The FUZZY PROVIDER location provider can also be used
by other applications to get obfuscated readings. The applica-
tion developed for this project does exactly that, as is evident
from the algorithm, instead of simply calculating and drawing
the obfuscated location on the screen directly.



Figure 8: Enlarge, Reduce, Shift, Reduce-Shift,
Enlarge-Shift/Shift-Enlarge.

E. Limitations

The Mock Location API allows us to create new location
providers, but it has limitations. None of the other applica-
tions can get readings from the new provider unless they
are explicitly coded to do so. This is a limitation of the
Android platform. The ideal case would be to change the
readings reported by the default providers (GPS PROVIDER,
NETWORK PROVIDER and PASSIVE PROVIDER), which
unfortunately Android does not allow. So while the implemen-
tation is sound in theory, it has limited practical benefit.

The formula for Shift operator requires us to calculate the
result for: {

σ − sinσ =
√
λπ

d = 2ricos(σ/2)

Unfortunately, there is no mathematical way to calculate σ,
except to approximate it using trial and error. However, that
option is not computationally optimal, especially in the case
of this application which requires real-time location updates.
Another way is to rely on online services like Wolfram Alpha
for the approximation, but that would add a dependency on an
internet connection and might not have a reasonable response
time depending on network conditions, not to mention the
API limitations of the service itself. Finally one could pre-
calculate various values for σ and save them offline, then pick
the nearest approximation. This was our preferred method,
but could not be implemented in time for the project. As an
approximation, a linear shift operator was implemented which
directly relies on the relevance value. A relevance of 1 would
mean no shifting would be applied, whereas a relevance of 0
would shift the obfuscated location in a random direction by
a distance equal to the radius of the original reading.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, the obfuscation operators discussed in
the paper “An Obfuscation-based Approach for Protecting
Location Privacy” by Claudio et al. have been implemented
into an Android application. A new location provider,
FUZZY PROVIDER has been implemented, using which

other applications can get obfuscated location readings.
Settings are provided to the users, where the relevance value
and the desired obfuscation operators can be selected.

For future work, our first goal is to expand the
implementation on Android to obfuscate readings from the
other available default providers, NETWORK PROVIDER
and PASSIVE PROVIDER. Next, we plan to implement the
actual algorithm for the Shift operator by pre-calculating
the values for σ for known ranges and using the nearest
approximation in real-time. This would still not be a perfect
implementation of the formula but it would be much better
than the linear algorithm in the current implementation.

A more ambitious goal for this project is to implement
this into the Android source code. Since Android is open
source (Android Open Source Project), our goal is to submit
patches of our implementation to the OS. This would allow
us to directly manipulate the location readings of the default
sensors, GPS PROVIDER, NETWORK PROVIDER and
PASSIVE PROVIDER. The user preferences would be
baked into the system settings where the user could specify
the relevance value. This way, any application which reads
location from the OS would read obfuscated location readings.

This work only obfuscates individual location readings
from sensors and does not account for sequential location
readings. In other words, it does not specifically obfuscate a
users path. We are interested in exploring research in that area
and combining this technique with any candidate solutions
for obfuscating user path.

REFERENCES

[1] A. Claudio, M. Cremonini, and S. Capitani, P. Samarati. An Obfuscation-
based Approach for Protecting Location Privacy, IEEE, 2009.

[2] https://stackoverflow.com/questions/2531317/android-mock-location-on-
device

[3] [Online].Available: https://stackoverflow.com/questions/2839533/adding-
distance-to-a-gps-coordinate

[4] https://gis.stackexchange.com/questions/25494/how-accurate-is-
approximating-the-earth-as-a-sphere25580

[5] http://www.movable-type.co.uk/scripts/latlong-vincenty.html
[6] http://repo.xposed.info/module/com.brandonnalls.mockmocklocations


